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Summary. Based on experimental observations, nanocrystalline materials are modeled as composite sys-

tems in which the amorphous interfacial phase is treated as the matrix, whereas the nano-scale single

crystals are modeled as inclusions. Generally speaking, the elastic moduli of nanoscale crystals are higher

than those of the amorphous matrix phase, and the deformation mechanism of nanocrystalline materials

depends heavily on the size of the crystals. For conventional macro size crystal materials, such as coarse-

grained polycrystalline materials, the deformation mechanism due to dislocation movement is dominant.

When the crystal size is reduced to a certain critical value, plastic deformation is caused by shear banding

in the amorphous matrix. In order to model such a deformation mechanism in nanocrystalline materials,

constitutive equations are established based on internal variable theory. The proposed model reveals the

relation between the yield strength and the grain size of the material.

1 Introduction

Nanostructured materials have a microstructure whose characteristic length scale is on the

order of a few nanometers. Those materials consist of nanometer-sized crystallites with dif-

ferent crystallographic orientations and/or chemical compositions. The properties of nano-

crystalline materials deviate from those of single crystals or coarse-grained polycrystals. This

deviation results from the reduced size of the crystallites as well as from the numerous interfaces

between adjacent crystallites. Nanostructured materials have been the subject of intensive study

in the last decade [1]. Significant progress has been made in their processing and in the

understanding of their fundamental properties. In this investigation, we focus our attention on

developing a three-dimensional nonlinear constitutive equation for the deformation of nano-

crystalline metals. On the one hand, the microstructural constitutive equation can provide a

quantitative relation between material response and microstructural parameters, such as grain

size. On the other hand, it can be adapted into a FEM code when one needs to carry out

analysis on structures involving nanocrystalline materials.

Nanocrystalline materials have grain-size dependent mechanical properties which are sig-

nificantly different to those of their coarser-grained counterparts. For example, nanophase

metals are much stronger and apparently less ductile than conventional metals. Also nanophase

ceramics are more ductile and more easily formed than conventional ceramics [2]. In addition,

other structural features, such as pores, grain boundary junctions, and other crystal lattice

defects that depend upon the fabrication and processing procedures, also play a significant role

in the mechanical behavior of the materials. Therefore all the aforesaid structural aspects of
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nanophase materials must be considered in order to fully understand the mechanical behavior of

these new materials. Extensive experimental observations have shown that nanocrystalline

materials can be considered as composite systems consisting of essentially equiaxed grains and

amorphous interfacial phase [3]. Owing to their ultrafine grain size, nanophase materials have a

significant fraction of their atoms in grain boundaries. For an average grain diameter ranging

between 5 and 10 nm, the percentage of the atoms in the interfacial phase can reach up to 50%,

consequently the interfaces play a significant role in affecting the mechanical properties of

nanophase materials. The boundary phase can be treated as an amorphous material and shows a

lower elastic modulus and higher yield strength than the crystalline phase. It is well-known that

the dominant plastic deformation mechanism for conventional coarse-grained metal is dislo-

cation motion. For some nanocrystalline metals with a relatively large grain size, a dislocation-

dominated plastic deformation mechanism was demonstrated by both atomic-scale computer

simulations [4] and experimental observations [5]. When the grain sizes become smaller, the

dislocation pile-ups cannot be supported [6]. In such a case, the dominant plastic deformation

mechanism is due to the shear band formation in the amorphous phase. Experimental obser-

vations confirm that shear banding occurs in nanopolycrystalline materials [7], [8]. In addition

to dislocation movement and shear banding, diffusional creep is a very important deformation

process. Experimental observations reveal the enhanced atomic diffusion in nanocrystalline

materials [9]. In this paper, we will not incorporate the diffusional creep deformation into our

consideration. Interested readers are referred to the recent paper by Kim et al. [3].

In the current investigation, nanocrystalline materials are modeled as composites with

nanoscale single crystals serving as the inclusion phase, while the amorphous interfacial phase is

treated as the surrounding matrix phase. The matrix has a lower elastic modulus than that of

the inclusions. Based on the deformation mechanism and the internal variable constitutive

theory, in our study, the relation between the yield stress and grain sizes is predicted. It is found

that for large grain materials the classical Hall-Petch relation is valid. For small grain materials,

the yield stress is predicted to be constant if the elastic moduli of the crystalline phase and the

amorphous phase are assumed to be the same, or it decreases with decreasing grain size if the

elastic moduli of the two phases are different. Furthermore, a general form of incremental

stress-strain relation is derived according to the deformation mechanism. The theory reveals the

kinematic hardening behavior of nanocrystalline metals.

2 Microstructural characteristics and deformation mechanism

of nanocrystalline materials

Many experimental techniques, such as TEM, HERM and X-ray analysis have provided

evidence for the presence of ‘‘spread’’ grain boundary structures in nanocrystalline materials

[10]. The intercrystalline volume fraction increases from about 0.3% at grain sizes ‡ 100 nm to

greater than 50% at grain sizes of less than 5 nm. TEM has shown that many nanocrystalline

materials are essentially equiaxed. If we further assume the grain is spherical with a uniform

diameter d, and the grain boundary thickness is a constant d, the total inter-crystalline volume

fraction is approximately given by

vm ¼ 1� d� d
d

� �3

: ð1Þ

Figure 1 shows the calculated volume fraction vf of the crystallite phase (vf ¼ 1� vm) as a

function of the grain size by applying a boundary thickness of 1 nm [11], [12]. The total
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intercrystalline component is shown to be consistent with previous suggestions [13]. The

interfacial region is believed to be composed of amorphous material. In general, the elastic

modulus of the amorphous phase Eam is approximately 60–75% of that of the corresponding

equilibrium crystalline alloy. There are evidences showing that the elastic modulus reduction of

nanocrystalline material is due to the existence of the voids [8]. As we mentioned above, if the

diffusion creep in nanocrystalline materials is neglected, there are two main deformation

mechanisms dominating the plastic process. For those nanocrystalline materials with com-

paratively large grains, say, the grain size is larger than a few tens of nanometer, dislocations

are generated at grain boundary ledges, and the material deforms plastically due to the dis-

location pile-ups and movement. Since for such materials the grains are still much smaller than

those in the conventional polycrystalline materials, the complex grain boundary structures will

dominate the dislocation generation and movement. For those nanocrystalline materials with

smaller grains, the dislocation activity is usually suppressed. The main plastic deformation

mechanism is the shear band formation in the amorphous interfacial phase. Phenomenologi-

cally the stress-strain relation for amorphous materials approaches ideal plastic behavior. And

in such case, the crystallites, playing the role of strengthening inclusion, will restrict the for-

mation of the shear bands. In what follows, the general constitutive equation is derived by

considering the two deformation mechanisms.

3 Internal variable constitutive theory

In a nonlinear deformation process, the thermodynamic state of a material element at a given

time is not only a function of the instantaneous value of the strain eij, but also depends upon

the previous history of eij. The investigation on the thermodynamic state can be dealt with in

various manners. One effective method is ‘‘internal variable theory’’ [14], [15]. To completely

define a thermodynamic state of a material, one needs to introduce some internal variables that

describe the microstructural change of the material during loading, besides identifying the

instantaneous strain. In such way, the dependence of the material response on loading history

can be replaced by the dependence on what it has produced. Namely, the current pattern of

structural arrangement on the microscale of the material element is represented by the current

values of internal variables. When the internal variables are fixed, the response of the material

depends only on the instantaneous value of the strain. However, the values of the internal
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variables depend on the loading history. The internal variable theory is based on the funda-

mental principle of thermodynamics. In its framework, one cannot only establish the relation

between the stress and strain, but also derive the evolution equation of the microstructures

based on the energy equilibrium concept. Consider a unit volume element of the material, its

state variables are denoted as the strain tensor eij, absolute temperature T and a group of

internal variables #ij. In other words, the variables eij, #ij and T can give a complete description

for the state of the system. The first fundamental law of thermodynamics can be expressed in

the following form:

dW ¼ dU � dQ; ð2Þ
where U is the internal energy of the system, dW is the elementary work done on the system and

dQ is the heat supply to the system.

The second fundamental law of thermodynamics states that there exists a state function

Sðgij; #k;TÞ, called entropy, such that

TdS � dQ: ð3Þ
If (3) holds with the equality sign, the process is reversible, otherwise it is irreversible. The

entropy can be written in the following form:

dS ¼ dðrÞSþ dðiÞS ; ð4Þ

where

dðrÞS ¼ dQ

T
ð5Þ

is the reversible increment of S, called the entropy supply from outside, whereas

dðiÞS � 0 ð6Þ

is the irreversible increment, referred to the entropy production inside the system. The com-

bination of (2), (3) and (4) leads to

dW ¼ dU � dQ ¼ dU � TdðrÞS ¼ dU � TdSþ TdðiÞS : ð7Þ

If the applied stress field on the material element is denoted as rij, the elementary work done on

the system can be written as

dW ¼ rijdeij: ð8Þ

On account of the fact that U and S are state functions, Eq. (8) can be replaced by the relation

rijdeij ¼ ð
@U

@eij

� T
@S

@eij

Þdeij þ ð
@U

@#ij

� T
@S

@#ij

Þd#ij þ ð
@U

@T
� T

@S

@T
ÞdT þ TdðiÞS : ð9Þ

For the pure heating case, (9) is reduced to

@U

@T
� T

@S

@T

� �
dT þ TdðiÞS ¼ 0 : ð10Þ

The second term in (10) is nonnegative according to (6). At the same time the quantity inside

the parentheses of (10) is a state function and hence is independent of dT. Since (10) must hold

for both positive and negative values of dT, we have

@U

@T
� T

@S

@T
¼ 0 : ð11Þ

It is noted that the above result is generally valid and independent of the choice of process even

though we have obtained it by considering a special process. Equation (9) can be simplified if

we introduce another state function, the free energy of the system defined by
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N ¼ U � TS : ð12Þ

Then Eq. (9) is rewritten as

rijdeij ¼
@N
@eij

deij þ
@N
@#ij

d#ij þ TdðiÞS: ð13Þ

As mentioned by Ziegler [15], the term TdðiÞS has the form of elementary work, and can be

expressed in the following form:

TdðiÞS ¼ Aijdeij þ Bijd#ij : ð14Þ
Substitution of Eq. (14) into Eq. (13) gives

rijdeij ¼
@N
@eij

þ Aij

� �
deij þ

@N
@#ij

þ Bij

� �
d#ij : ð15Þ

Since eij; #ij are independent state variables, the above equation implies

rij ¼
@N
@eij

þ Aij ; ð16Þ

@N
@#ij

þ Bij ¼ 0 : ð17Þ

In fact, Eq. (16) is the constitutive relation of the material, and Eq. (17) can be used to

determine the values of the internal variables.

We now rewrite Eq. (14) by replacing the differentials by time derivatives as follows:

U ¼ Aij _eij þ Bij
_#ij ; ð18Þ

where U is the dissipation function which is the rate of work done by the dissipation forces.

Equation (18) cannot determine the dissipation force, neither the tensors Aij and Bij, even if the

dissipation function is obtained. Instead, Eq. (18) determines their magnitude once the direc-

tion, i.e., the ratio of the components, is known. To determine the tensors Aij and Bij, we

introduce the following orthogonality condition: the dissipation force corresponding to the

velocity _eij or _#ij is orthogonal to the dissipation surface U ¼ U0 at the end point. Therefore we

obtain

Aij ¼ k1
@U
@ _eij

;

Bij ¼ k2
@U

@ _#ij

;

ð19Þ

where k1; k2 are proportional factors determined with the aid of (18), given by

k1 ¼
@U
@ _eij

_eij

� ��1

U ;

k2 ¼
@U

@ _#ij

_#ij

 !�1

U :

ð20Þ

It is worth to note that as discussed by Ziegler [15], the orthogonality condition is equivalent to

the principle of maximal dissipation rate.

4 Dislocation-dominated deformation mechanism for nanocrystalline materials

with comparatively large grain size

In this part, we will establish the constitutive equation of the nanocrystalline materials

governed by the deformation mechanism of intragrain dislocation movement. The material can
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be treated as a composite system whose inclusions have plastic deformation due to dislocation

motion, and whose amorphous matrix deforms elastically only with a lower elastic modulus

than that of the inclusions. The deformation of the crystallite is assumed to follow the elastic

and non-hardening plastic Mises yielding criterion. By considering the hardening effect of the

grain boundary, the yield stress is expressed as a decreasing function of grain size according to

the Hall-Petch relation as

f1ðrc
ijÞ ¼

ffiffiffiffiffi
J2

p
� ðry þ

kyffiffiffi
d
p Þ ¼ 0 ; ð21Þ

where d is the grain diameter, and ry; ky are temperature-dependent material constants.

J2ð¼ 1
2
sijsijÞ is the second principle invariant of the stress deviator with

sij ¼ rij � rmdij: ð22Þ

Consider a unit volume of a nanocrystalline material, in which the spherical crystallites with the

plastic strain ep

ij are distributed in the amorphous matrix. In this part the plastic strains are

denoted as the internal variables. If e0
ij is denoted as the strain field created by the applied

traction in the absence of the plastic strain, according to Colonnetti’s theorem [16], the strain

energy for the case when e0
ij and ep

ij coexist is the sum of those elastic energies for the cases when

the applied load and the plastic strain exist alone, respectively. Therefore, if the element is

subjected to an applied surface traction without any plastic deformation, the elastic strain

energy becomes

N1 ¼
1

2

Z
D

ðr0
ij þ r

0

ijÞðe0
ij þ e

0

ijÞdv; ð23Þ

where e0
ij is the applied external strain, r0

ij is the corresponding stress field if the inclusions have

the same elastic modulus as the matrix; r
0
ij ; e

0
ij are the perturbations of stress and strain fields

induced by the existences of the crystallites. Use u
0
i denoting the perturbation of the dis-

placement field, on the boundary of the element,

u
0

i ¼ 0 ; on S: ð24Þ

Therefore,Z
D

ðr0
ij þ r0ijÞe0ijdv ¼

ZZ
S

ðr0
ij þ r0ijÞnju

0
idv�

Z
D

ðr0
ij þ r0ijÞ;ju0idv ¼ 0;

Z
D

r0ije
0
ijdv ¼

Z
D

Cijklðe0kl � e�klÞe0
ijdv ¼ �

Z
D

r0
ije
�
ijdv; ð25Þ

where e�ij is the fictitious eigenstrain introduced in the equivalent inclusion method [16]. Sub-

stitution of Eq. (25) into Eq. (23) yields

N1 ¼
1

2

Z
D

r0
ije

0
ijdv� 1

2

Z
D

r0
ije
�
ijdv ¼ 1

2
ðr0

ije
0
ij � vf r

0
ije
�
ijÞ; ð26Þ

where vf is the volume fraction of the crystallite phase. One can notice that the sign of the last

term in Eq. (26) is different from Mura’s result. This is because we assume that the given term is

the strain field e0
ij instead of the stress field r0

ij. The fictitious eigenstrain e�ij can be determined by

using the Mori and Tanaka method [17] to consider the interaction among the inclusions, which

is shown in Appendix 1 in detail. For isotropic, spherical crystallites, one can express the energy

in the form of
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N1 ¼
1

2
ð2�l E1

ijkl þ �k E2
ijklÞe0

ije
0
kl ; ð27Þ

where

E1
ijkl ¼

1

2
ðdikdjl þ dildjkÞ; E2

ijkl ¼ dijdkl ;

�l ¼ l� vf lC1 ;

�k ¼ k� vf ðkC1 þ 2lC2 þ 3kC2Þ ;

C1 ¼ 2ðl� � lÞ=x1 ;

C2 ¼ ðk� � kÞ=x1 � 2x2ðl� � lÞ=½x1ðx1 þ 3x2Þ� � 3ðk� � kÞx2=½x1ðx1 þ 3x2Þ� ;

x1 ¼ 2ð1� vf Þðl� l�ÞS1 � 2l ;

x2 ¼ 2ð1� vf Þðl� l�ÞS2 þ ð1� vf ÞS1ðk� k�Þ þ 3ð1� vf Þðk� k�ÞS2 � k ;

S1 ¼ 2ð4� 5cÞ=½15ð1� cÞ�; S2 ¼ ð5c� 1Þ=½15ð1� cÞ� ;

ð28Þ

in which l; k; l�; k� are Lamé constants of the amorphous matrix and crystallites, respectively,

c is and Poisson’s ratio of the matrix. As mentioned above, under isothermal conditions, the

state variables are the total strain tensor eij and the internal variables ep

ij for our system.

Therefore we need to express the elastic energy as a function of the total strain and the plastic

strain. The total strain of the material element can be expressed in the form of

eij ¼ e0
ij þ eD

ij; ð29Þ

where e0
ij is the applied elastic strain without any plastic deformation, eD

ij is the volume average

strain created by the plastic deformation inside the crystallites. If the crystallites have the same

elastic modulus as the matrix, eD
ij ¼ vf e

p

ij. Since the elastic modulus of the crystallite phase is

different from that of the amorphous matrix, we can adapt the Mori-Tanaka method to

determine the volume average of the plastic strain as (Appendix 2)

eD
ij ¼ vf Dijkle

p
kl ; ð30Þ

where

Dijkl ¼ D1 E1
ijkl þ D2 E2

ijkl ;

D1 ¼ 2l�=B1 ;

D2 ¼ k�=B1 � 2l�B2=½B1ðB1 þ 3B2Þ� � 3k�B2=½B1ðB1 þ 3B2Þ� ;

B1 ¼ 2½l� þ ð1� vf Þðl� � lÞðS1 � 1Þ� ;

B2 ¼ k� þ ð1� vf Þ½2S2ðl� � lÞ þ ðS1 � 1Þðk� � kÞ þ 3S2ðk� � kÞ� ;

ð31Þ

in which all the symbols are the same as in Eq. (28).

Now we consider the other part of the elastic energy produced by the plastic deformation in

the crystallites:

N2 ¼
1

2

Z
D

rijðeij � ep

ijH½RXk�Þdv ; ð32Þ

with
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H½RXk� ¼
1 x 2 RXk ,
0 x =2 RXk,

�
ð33Þ

where RXk is the region occupied by the crystallite phase. Since the traction on the boundary of

the element is absent, we haveZ
d

rijeijdv ¼
ZZ

S

rijnjuids�
Z
D

rij;juidv ¼ 0 : ð34Þ

Equation (32) is thus rewritten as

N2 ¼ �
1

2
R
Z
Xk

rije
p

ijdv ¼ � 1

2
vf rije

p

ij ; ð35Þ

where rij is the stress field in the crystallite induced by the plastic deformation. By using Mori-

Tanaka average field method, the stress field inside the crystallite is derived as (Appendix 2)

rij ¼ Gijkle
p
kl ; ð36Þ

where

Gijkl¼G1 E1
ijklþG2E2

ijkl ;

G1¼2ð1�vf ÞlðS1�1ÞD1 ;

G2¼ð1�vf Þf2D2lðS1�1ÞþD1½2lS2þkðS1�1Þþ3kS2�þ3D2½2lS2þkðS1�1Þþ3kS2�g;
ð37Þ

in which all the symbols have the same meaning given in Eqs. (28) and (31). By taking the sum

of Eqs. (27) and (35) and substituting the corresponding quantities, one can write the total

elastic energy of the system as

N ¼ N1 þ N2 ¼
1

2
ð2�l E1

ijkl þ �k E2
ijklÞðeij � vf Dijmnep

mnÞðekl � vf Dklmnep
mnÞ �

1

2
vf Gijkle

p

ije
p
kl : ð38Þ

Since the crystallites undergo the plastic deformation which induces energy dissipation, the

energy dissipation rate in unit volume can be expressed in the form of

U ¼ vf r
c
ij

_ep

ij ; ð39Þ

where rc
ij is the resistance tensor of the plastic deformation and satisfies the yielding condition

(21), and _ep

ij is the rate of the plastic deformation. One should bear in mind that only under the

loading condition beyond the yielding point the energy dissipation rate is not zero. Under the

unloading condition or in the stage of elastic deformation, _ep

ij ¼ 0.

Substituting the energy Eq. (38) into Eq. (16), and noticing Aij ¼ 0 for the dissipation

potential given by Eq. (39), one can derive the constitutive equation as

rij ¼ ð2�l E1
ijkl þ �k E2

ijklÞðekl � vf Dklmnep
mnÞ ; ð40Þ

or in rate form as

_rij ¼ �Cijklð _ekl � vf Dklmn _ep
mnÞ ¼ ð2�l E1

ijkl þ �k E2
ijklÞð _ekl � vf Dklmn _ep

mnÞ : ð41Þ

The change rate of plastic deformation can be determined through the evolution Eq. (17) as

rc
ij ¼ Dijmnrmn þ Gijmnep

mn ; ð42Þ
where rmn is the applied stress determined by Eq. (40). Substitution of Eq. (42) into the yielding

condition of the crystallite, Eq. (21), gives the loading surface of the composite material. As

expected, it is seen that the material behaves as a kinematic hardening material [18]. If ep

ij ¼ 0,

combination of Eqs. (21) and (42) gives the initial yield surface of the material. Using the

loading surface, the criterion for loading can be written in the form
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f1ðrc
ijÞ ¼ 0;

@f1

@rij

� _rij > 0 : ð43Þ

Further by substituting Eq. (40) into Eq. (42), then into Eq. (21), and taking the derivative with

respect to time, one can obtain

@f1

@rc
ij

fDijkl
�Cklmn _emn þ ½Gijmn � vf Dijkl

�CklabDabmn� _ep
mng ¼ 0 : ð44Þ

By using the Prandtl-Reuss [19] material model, the rate of the plastic deformation can be

written as

_ep
mn ¼ _k

@f1

@rc
mn

: ð45Þ

Substituting Eq. (45) into Eq. (44) and solving for _k, we have

_k ¼
@f1=@rc

ijDijkl
�Cklmn

@f1=@rc
ij½vf Dijkl

�CklabDabmn � Gijmn�@f1=@rc
mn

_emn ¼ Dmn _emn : ð46Þ

Substituting Eq. (46) into Eq. (45), then into Eq. (41), one obtains the incremental stress-strain

relation as

_rij ¼ CP
ijkl

_ekl ¼ �Cijmn

�
E1

mnkl �
vf Dmnabb@f1

@rc
abDkl

�
_ekl : ð47Þ

It is worth to note that the incremental stress-strain relation given in Eq. (47) is the most

convenient form for it to be implemented into a FEM code.

5 Deformation mechanism by shear banding in amorphous interfacial phases

for nanocrystalline materials with smallsize grain

The amorphous interfacial phase in nanocrystalline metals behaves as metallic glasses. In fact,

the typical deformation mechanism for metal glasses is shear band formation. Due to this

deformation mechanism, the tension behavior of the materials is quite different to the com-

pression behavior although they can be described as elastic-perfectly plastic materials. Research

activities related to metallic glasses have been greatly enhanced recently. Donovan [20] studied

plastic deformation of a Pd-Ni-P glass and concluded that the onset of yielding was best

described by the Mohr-Coulomb law in which the normal stress on a particular plane affects the

critical shear stress at which yielding begins to occur. According to this law, the shear stress s
for yielding is given by

f2 ¼ s� ðsy � arnÞ ¼ 0; ð48Þ

where sy is the yield stress in pure shear and rn is the normal tensile stress acting on the active

slip plane, a is another material constant.

In this paper, we assume that the amorphous interfacial phase can be described as elastic-

perfectly plastic material, and the yielding is described by the Mohr-Coulomb law given in Eq.

(48). In such case, the crystallite phase deforms elastically. Therefore we will restrict plastic

deformation to that of the amorphous matrix, as the strengthening second phase in dispersion

hardening alloys. Under a given loading history, for simplicity, the plastic deformation epm

ij in

the uniform amorphous matrix without any elastic crystallite phase is assumed to be uniform.

Since uniform plastic strain over the entire body does not produce internal stress, the internal
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stress and the elastic energy induced by the prescribed plastic deformation in the matrix are

calculated by considering the situation, where

ep

ij ¼ 0 in the matrix;

ep

ij ¼ �epm

ij in the crystallites:

The elastic energy given by Eqs. (27) and (35) is still the same, but the overall plastic strain

becomes

eD
ij ¼ epm

ij � vf Dijkle
pm
kl ¼ ðE1

ijkl � vf DijklÞepm
kl : ð49Þ

Substituting Eq. (49) into Eq. (29), then into Eq. (27) and (35), one obtains the total elastic

energy

N ¼ N1 þ N2 ¼
1

2
ð2�l E1

ijkl þ �k E2
ijklÞ½eij � ðEijmn � vf DijmnÞepm

mn�½ekl � ðE1
klmn � vf DklmnÞepm

mn�

� 1

2
vf Gijkle

pm

ij epm
kl : ð50Þ

The energy dissipation rate in unit volume can be expressed in the form

U ¼ ð1� vf Þrcm
ij

_epm

ij ; ð51Þ

where rcm
ij is the resistance force of the plastic deformation and satisfies the yielding condition

(48). In the same manner as deriving Eq. (41), we can derive the stress-strain rate relation as

_rij ¼ �Cijkl½ _ekl � ðE1
klmn � vf DklmnÞ _epm

mn�

¼ ð2�l E1
ijkl þ �k E2

ijklÞ½ _ekl � ðE1
klmn � vf DklmnÞ _epm

mn� : ð52Þ

The change rate of the plastic deformation can be determined through the evolution Eq. (17) as

rcm
ij ¼ ½ðE1

ijmn � vf DijmnÞrmn þ vf Gijmnep
mn�=ð1� vf Þ : ð53Þ

Substitution of Eq. (53) into the yielding condition of the crystallite, Eq. (48), gives the loading

surface of the composite material. It can be seen that the material also behaves as a kinematic

hardening material.

In the same way as deriving Eq. (47), one can obtain the final stress-strain rate relation under

the loading condition as

_rij ¼ CP
ijkl

_ekl ¼ �Cijmn½E1
mnkl �

ðE1
mnab � vf DmnabÞ@f2

@rcm
ab Dm

kl

� _ekl ; ð54Þ

with

Dm
mn ¼

@f2=@rcm
ij ðE1

ijkl � vf DijklÞ�Cklmn

@f2=@rcm
ij ½ðE1

ijkl � vf DijklÞ�CklabðE1
abmn

� vf DabmnÞ � vf Gijmn�@f2=@rcm
mn

: ð55Þ

6 Comparison between the theoretical prediction and experiments

6.1 Effective elastic modulus

It is generally believed that the elastic moduli of nanocrystalline materials are lower than those

of their coarse-grain counterparts due to the low density of the amorphous interfacial phase.

Recently, nanocrystalline materials were fabricated by controlled annealing of amorphous

216 B. Wang and Z. M. Xiao



alloys between the glass transition temperature and the crystallization temperature [21], [22]. In

the current study, we use the data of bulk Zr53Ti5Ni10Cu20Al12 alloy obtained by Fan et al. [21]

to verify our elastic modulus prediction. The elastic constants of the amorphous matrix and

nanoparticles can be taken as

l ¼ 34:23 GPa; k ¼ 51:35 GPa; l� ¼ 45:5 GPa; k� ¼ 66 GPa;

respectively. The elastic moduli tensor obtained by this model is given by

�Cijkl ¼ 2�l E1
ijkl þ �k E2

ijkl; ð56Þ
where the effective Lamé constants �k; �l of the nanocrystalline material are given by Eq. (28)

explicitly. After determining �k; �l, one can obtain the effective Young’s modulus for the

composite system. The Young’s modulus versus the volume fraction of the nanoparticles is

plotted in Fig. 2. Since the elastic mismatch between the two phase materials is small, the

effective modulus of the composite system almost increases linearly with the volume fraction of

the inclusions as shown in Fig. 2, in which the experimental data of Fan et al. [21] for Young’s

modulus were also given.

6.2 Dependence of yield stress on the grain size

The relation between yield stress and grain size has been the subject of intensive research in

recent years due to the complex behavior observed in nanophase materials. Most of the results

obtained confirm the validity of the classical Hall-Petch relation down to grain sizes of the

order of a few tens of nanometers [8]. When the grain size is further reduced below this value,

the results obtained are controversial. Many experimental results indicate a yield stress inde-

pendent of the grain size, or even reverse H-P relation, i.e., the yield stress will decrease with

decreasing grain size. According to the work of Sanders et al. [8], the reduction in elastic

modulus is mainly due to the porosity of the samples of the nanocrystalline materials. For high

density and high-purity nanocrystalline materials, only small decrements from coarse-grained

values observed in the Young’s modulus are caused primarily by the slight amount of porosity

in the samples. In this part, we derive the relation between the yield stress and the grain size by

assuming the two phases of the material have the same elastic modulus. For homogenous

material, the stresses both inside the inclusion and in the matrix are uniform if plastic defor-

mation has not occurred. When the size of the grain becomes smaller, the shear banding

deformation mechanism dominates. The uniaxial yield stress is constant and determined by
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Eqs. (48) and (53). For materials exhibiting little work hardening, the ratio of the Vickers

microhardness to the yield strength is � 3 [23]. According to the hardness measurements on

over 30 nanocrystalline Cu samples with a grain size ranging from < 10 nm to >100 nm, the

corresponding yield strength was in general agreement with the coaser-grained Hall-Petch

relationship down to a grain size of �16 nm, at this point the yield strength leveled off and

approached a constant value [30]. Based on the above two deformation models, the theory

predicts exactly such a trend. The yield stress as a function of the grain size is shown in Fig. 3.

7 Conclusions

In this paper, based on the microstructural characteristics and the two deformation mechanisms,

dislocation movement inside the crystallite and shear banding in the amorphous matrix of

nanocrystalline metals, a general form of constitutive model for nanocrystalline materials was

developed. Thematerial wasmodeled as a composite systemwith one phase being able to undergo

plastic deformation. An energy approach was adopted to derive the hardening rule and the

incremental stress-strain relation of nanocrystallinematerials. Recently, due to the pioneer works

by Fleck andHutchinson [25], Hutchinson [26], Gao et al. [27], Huang et al. [28], etc, the theory of

strain gradient plasticity became a very active research direction. In the current study, we

emphasize that only the microstructures of the material are in nanoscale, whereas the wavelength

of the overall deformation ismuch larger than the size of themicrostructures. Thereforewe do not

need to incorporate the formulation of strain gradient plasticity. The constitutive equations

obtained can be easily implemented into a FEM code when there is a need for numerical simu-

lation of nanocrystalline materials and structures.

Appendix 1

Determination of the fictitious eigenstrain e�ij

Consider that in an elastic matrix there is a random distribution of inclusions. The elastic

moduli tensors of the matrix and inclusions are Cijkl; C�ijkl, respectively. The composite element

is subjected to an external applied strain field e0
ij. Under such condition, we assume that the
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average strain field in the matrix is eM
ij . To incorporate the interaction effect of the inclusions, we

further assume that every single inclusion is subjected to the strain field eM
ij , instead of e0

ij.

According to the equivalent inclusion principle [16], [29], the stress field inside an inclusion can

be expressed in the following form:

C�ijklðeM
kl þ e0klÞ ¼ CijklðeM

kl þ e0kl � e�klÞ ðA:1Þ

which defines the fictitious eigenstrain e�kl, and e0kl is the perturbation of strain field due to the

existence of the inclusion, and is given by

e0kl ¼ Sklmne�mn; ðA:2Þ

where Sklmn is Eshelby’s tensor.

Since the volume average of the strain field should be equal to the applied strain field, one can

write

vf ðeM
ij þ e0ijÞ þ ð1� vf ÞeM

ij ¼ eo
ij : ðA:3Þ

From the above three equations, one can derive

e�ij ¼ Cijkle
0
kl ; ðA:4Þ

where

Cijkl ¼ ½Cþ ð1� vf ÞðC� � CÞS��1
ijmnðC�mnkl � CmnklÞ : ðA:5Þ

For isotropic material, we have

C�ijkl ¼ 2l� E1
ijkl þ k� E2

ijkl ;

Cijkl ¼ 2l E1
ijkl þ k E2

ijkl ;
ðA:6Þ

where l; k; l�; k� are Lamé constants of the matrix and inclusions, respectively, and

E1
ijkl ¼

1

2
ðdikdjl þ dildjkÞ; E2

ijkl ¼ dijdkl : ðA:7Þ

For spherical inclusion, Eshelby’s tensor can be expressed in the form

Sijkl ¼ S1 E1
ijkl þ S2 E2

ijkl ; ðA:8Þ

where S1 ¼ 2ð4� 5cÞ=½15ð1� cÞ�; S2 ¼ ð5c� 1Þ=½15ð1� cÞ�, and c is Poisson’s ratio of the

matrix. By introducing the tensors E1
ijkl; E2

ijkl, we can simplify our analysis. Since

E1
ijkl � E1

klmn ¼ E1
ijmn; E1

ijkl � E2
klmn ¼ E2

ijmn; E2
ijkl � E2

klmn ¼ 3E2
ijmn ;

ða E1
ijkl þ b E2

ijklÞ �
1

aE1
klmn

� b

½aðaþ 3bÞ� E2
klmn

� �
¼ E1

ijmn ;
ðA:9Þ

substituting Eqs. (A.6), (A.7) into Eq. (A.5), and using Eq. (A.9), we obtain

e�ij ¼ ðC1 E1
ijkl þ C2 E2

ijklÞe0
kl ; ðA:10Þ

where

C1 ¼ 2ðl� � lÞ=x1;

C2 ¼ ðk� � kÞ=x1 � 2x2ðl� � lÞ=½x1ðx1 þ 3x2Þ� � 3ðk� � kÞx2=½x1ðx1 þ 3x2Þ� ;

x1 ¼ 2ð1� vf Þðl� l�ÞS1 � 2l ;

x2 ¼ 2ð1� vf Þðl� l�ÞS2 þ ð1� vf ÞS1ðk� k�Þ þ 3ð1� vf Þðk� k�ÞS2 � k :

ðA:11Þ
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In essence, the assumption taken in this part is the same as Mori-Tanaka theory for random

distribution of the inclusions.

Appendix 2

Determination of the overall strain and the stress inside

an inclusion created by the plastic deformation

In the amorphous matrix, the problem now becomes that there is a random distribution of

inclusions with a plastic strain ep

ij. The applied stress field on the material element is absent in

this case. We need to derive the volume average strain and the stress field inside a single

inclusion due to the plastic deformation. According to the equivalent inclusion principle, we

have

C�ijklðeM
kl þ Sklmne��mn � ep

klÞ ¼ CijklðeM
kl þ Sklmne��mn � e��kl Þ ; ðA:12Þ

where e��kl ¼ ep
kl þ e�kl is the total eigenstrain due to the plastic deformation and the elastic

modulus mismatch. Since the applied stress is absent, the volume average of the stress field is

zero, therefore

vf CmnijðeM
ij þ Sijkle

��
kl � e��ij Þ þ ð1� vf ÞCmnije

M
ij ¼ 0: ðA:13Þ

From Eqs. (A.12) and (A.13), one can obtain the total eigenstrain e��kl as

e��ij ¼ ½C � þð1� vf ÞðC� � CÞðS� E1Þ��1
ijklC

�
klmnep

mn ;

eM
ij ¼ �vf ðSijkl � E1

ijklÞe��kl : ðA:14Þ

The stress field inside a single inclusion can be obtained in the form

rij ¼ CijklðeM
kl þ Sklmne��mn � e��kl Þ ¼ Gijkle

p
kl ; ðA:15Þ

and for isotropic material and spherical inclusion

Gijkl ¼ G1 E1
ijkl þ G2 E2

ijkl ;

G1 ¼ 2ð1� vf ÞlðS1 � 1ÞD1 ;

G2 ¼ ð1� vf Þf2D2lðS1 � 1Þ þ D1½2lS2 þ kðS1 � 1Þ þ 3kS2�

þ 3D2½2lS2 þ kðS1 � 1Þ þ 3kS2�g ;
with

D17 ¼ 2l�=B1 ;

D2 ¼ k�=B1 � 2l�B2=½B1ðB1 þ 3B2Þ� � 3k�B2=½B1ðB1 þ 3B2Þ� ;

B1 ¼ 2½l� þ ð1� vf Þðl� � lÞðS1 � 1Þ� ;

B2 ¼ k� þ ð1� vf Þ½2S2ðl� � lÞ þ ðS1 � 1Þðk� � kÞ þ 3S2ðk� � kÞ� : ðA:16Þ
The volume average of the strain field can be written in the form

eD
ij ¼

1

V

Z
D

eijdv ¼ 1

V

Z
D

ðC�1
ijklrkl þ e��ij Þdv : ðA:17Þ

Since
R
D

rijdv ¼
RR
S

rikxjnkds�
R
D

rik;kxjdv ¼ 0, one obtains

eD
ij ¼ vf Dijkle

p
kl ; ðA:18Þ
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where

Dijkl ¼ D1 E1
ijkl þ D2 E2

ijkl : ðA:19Þ
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